Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins.

نویسندگان

  • Shin-Ichiro Narita
  • Hajime Tokuda
چکیده

Escherichia coli lipoproteins with Asp at position 2 remain in the inner membrane, whereas those having other amino acids are targeted to the outer membrane by the Lol system. However, inner membrane lipoproteins without Asp at position 2 are found in other Gram-negative bacteria. MexA of Pseudomonas aeruginosa, an inner membrane-specific lipoprotein involved in multidrug efflux, has Gly at position 2. To identify the residue or region of MexA that functions as an inner membrane retention signal, we constructed chimeric lipoproteins comprising various regions of MexA and an outer membrane lipoprotein, OprM, and analyzed their membrane localization. Lys and Ser at positions 3 and 4, respectively, were found to be critical for the inner membrane localization of MexA in P. aeruginosa. Substitution of these residues with Leu and Ile, which are present in OprM, was sufficient to target the chimeric lipoprotein to the outer membrane and to abolish the ability of MexA to confer drug resistance. The membrane specificity of a model lipoprotein, lipoMalE, a lipidated variant of the periplasmic maltose-binding protein of E. coli, was also determined by the residues at positions 3 and 4 in P. aeruginosa. In contrast to the widely accepted "+2 rule" for E. coli lipoproteins, these results suggest a new "+3, +4 rule" for lipoprotein sorting in P. aeruginosa, namely, the final destination of lipoproteins is determined by the residues at positions 3 and 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Mutations of Antimutator Gene pfpI in Pseudomonas aeruginosa Species Isolated from Burn Patients in Tehran, Iran

Introduction: Pseudomonas aeruginosa is an opportunistic pathogen of clinical importance, particularly in immunocompromised and burn patients. This bacterium is becoming resistant to many antibiotics via intrinsic or acquired mechanisms. Mutations in anti-mutator genes, such as pfpI, can be a potential intrinsic mechanism of antibiotic resistance. This study aimed to evaluate the possible effec...

متن کامل

OprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study

Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...

متن کامل

The effect of the length of a malarial epitope on its antigenicity and immunogenicity in an epitope presentation system using the Pseudomonas aeruginosa outer membrane protein OprF as the carrier.

This study showed that the antigenicity of a malarial epitope increased with the length of the epitope when inserted at positions aa26 (amino acid position 26) and aa196, but not at aa213, of the Pseudomonas aeruginosa major outer membrane protein OprF (326 amino acids). Immunization studies showed that a 19-aa epitope was significantly more immunogenic than a 7-aa epitope when inserted at aa26...

متن کامل

Protection of immunosuppressed mice against infection with Pseudomonas aeruginosa by recombinant P. aeruginosa lipoprotein I and lipoprotein I-specific monoclonal antibodies.

Outer membrane protein I (OprI) is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. The protective effect of OprI vaccination and that of three OprI-specific monoclonal antibodies (MAbs) against infection with P. aeruginosa were tested in immunosuppressed mice. The combination of Oprl and MAb 2A1 protected the mice against a challenge with a 96-fold 50% lethal dose. Th...

متن کامل

Solubilization and reconstitution of the Pseudomonas aeruginosa high affinity branched-chain amino acid transport system.

The high affinity branched-chain amino acid transport system (LIV-I) in Pseudomonas aeruginosa is composed of five components: BraC, a periplasmic binding protein for branched-chain amino acids; BraD and BraE, integral membrane proteins; BraF and BraG, putative nucleotide-binding proteins. By using a T7 RNA polymerase/promoter system we overproduced the BraD, BraE, BraF, and BraG proteins in Es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 18  شماره 

صفحات  -

تاریخ انتشار 2007